FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis.

نویسندگان

  • Miguel Angel Moreno-Risueno
  • Noemi González
  • Isabel Díaz
  • François Parcy
  • Pilar Carbonero
  • Jesús Vicente-Carbajosa
چکیده

Accumulation of storage compounds in the embryo and endosperm of developing seeds is a highly regulated process that allows seedling growth upon germination until photosynthetic capacity is acquired. A critical regulatory element in the promoters of seed storage protein (SSP) genes from dicotyledonous species is the RY box, a target of B3-type transcription factors. However, the functionality of this motif in the transcriptional regulation of SSP genes from cereals has not been fully established. We report here the identification and molecular characterization of barley FUSCA3, a B3-type transcription factor as yet uncharacterized in monocotyledonous plants. Our results show that both the barley and Arabidopsis FUS3 genes maintain a conserved functionality for the regulation of SSP genes and anthocyanin biosynthesis in these two distantly related phylogenetic groups. Complementation of the loss-of-function mutant fus3 in Arabidopsis by the barley HvFus3 gene resulted in restored transcription from the At2S3 gene promoter and normal accumulation of anthocyanins in the seed. In barley, HvFUS3 participates in transcriptional activation of the endosperm-specific genes Hor2 and Itr1. HvFUS3, which specifically binds to RY boxes in EMSA experiments, trans-activates Hor2 and Itr1 promoters containing intact RY boxes in transient expression assays in developing endosperms. Mutations in the RY boxes abolished the HvFUS3-mediated trans-activation. HvFus3 transcripts accumulate in the endosperm and in the embryo of developing seeds, peaking at mid maturation phase. Remarkably, HvFUS3 interacts with the Opaque2-like bZIP factor BLZ2 in yeast, and this interaction is essential for full trans-activation of the seed-specific genes in planta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.

FUSCA3 (FUS3) is a B3 domain transcription factor that is a member of the LEAFY COTYLEDON (LEC) group of genes. The LEC genes encode proteins that also include LEC2, a B3 domain factor related to FUS3, and LEC1, a CCAAT box-binding factor. LEC1, LEC2, and FUS3 are essential for plant embryo development. All three loss-of-function mutants in Arabidopsis (Arabidopsis thaliana) prematurely exit em...

متن کامل

The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism

It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development and seed germination in cereals, a larg...

متن کامل

ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals.

In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by v...

متن کامل

Seed Maturation Regulators Are Related to the Control of Seed Dormancy in Wheat (Triticum aestivum L.)

In Arabidopsis, the regulation network of the seed maturation program controls the induction of seed dormancy. Wheat EST sequences showing homology with the master regulators of seed maturation, leafy cotyledon1 (LEC1), LEC2 and FUSCA3 (FUS3), were searched from databases and designated respectively as TaL1L (LEC1-LIKE), TaL2L (LEC2-LIKE), and TaFUS3. TaL1LA, TaL2LA and TaFUS3 mainly expressed ...

متن کامل

TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.

Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TES...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2008